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The source code discussed in this tutorial is 
installed by the Cg Toolkit installer for Windows at 
c:\Program Files\NVIDIA Corporation\Cg\examples\OpenGL\basic\24_bump_map_torus 

When Randy and I wrote The Cg Tutorial,† we wanted a book that would convey our 
intense enthusiasm for programmable graphics using Cg,‡ short for C for Graphics.  We 
focused our tutorial on the language itself:  What is the Cg language and how do you 
write Cg programs for programmable graphics hardware? 

We chose our language focus for a couple of different reasons. 

First off, the language is where all the power and new concepts are.  Once you interface 
Cg into your graphics application, it’s the Cg language that really matters.  For a 
conventional CPU programming language, explaining the Cg runtime is somewhat akin 
to explaining how to edit programs and how to run the compiler.  Obviously, you’ve got 
to learn these tasks, but there’s nothing profound about using an editor or compiler.  
Likewise, there’s nothing deep about the Cg runtime either; it’s a fairly straightforward 
programming interface. 

Second, how you interface Cg to your application is a matter of personal design and 
depends on the nature of your application and your choice of application programming 
language, operating system, and 3D programming interface.  While Randy and I are 
happy to explain Cg and show how to program your graphics hardware with it, you are 
the person best able to interface Cg into your application code. 

                                                 

* You have permission to redistribute or make digital or hard copy of this article for non-commercial or 
educational use. 

† The Cg Tutorial by Randima (Randy) Fernando and Mark J. Kilgard is published by Addison-Wesley 
(ISBN 0321194969, 336 pages).  The book is now available in Japanese translation (ISBN4-939007-55-3). 

‡ Cg in Two Pages (http://xxx.lanl.gov/ftp/cs/papers/0302/0302013.pdf) by Mark J. Kilgard is a short 
overview of the Cg language.  Cg: A System for Programming Graphics Hardware in a C-like Language 
(http://www.cs.utexas.edu/users/billmark/papers/Cg) by Bill Mark, Steve Glanville, Kurt Akeley, and Mark 
J. Kilgard is a SIGGRAPH 2003 paper explaining Cg’s design in 12 pages. 

http://xxx.lanl.gov/ftp/cs/papers/0302/0302013.pdf
http://www.cs.utexas.edu/users/billmark/papers/Cg
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Third, the language shares its design, syntax, and semantics with Microsoft’s DirectX 9 
High-Level Shader Language (HLSL).  This means you can chose whether to use 
Microsoft’s HLSL runtime (ideal for developers focused on DirectX for the Windows 
platform) or the Cg runtime—supplied by NVIDIA—for those of you who want to 
support a broad range of operating systems and 3D programming interfaces (such as 
Linux, Apple’s OS X, and OpenGL).  Because The Cg Tutorial focuses on the Cg 
language, all the concepts and syntax explained in the book apply whether you choose to 
use the Cg or HLSL implementation when it comes time to actually write your shader 
programs.  Since there’s been some confusion about this point, understand that The Cg 
Tutorial examples in the book compile with either language implementation.  We hope 
The Cg Tutorial is an instructive book about both Cg and HLSL. 

To avoid all the mundane details necessary to interface Cg programs to a real application, 
The Cg Tutorial includes an accompanying CD-ROM* with a software framework so you 
can examine and modify the various Cg programs in the book and see the rendering 
results without worrying about the mundane details of writing a full application, loading 
models and textures, and interfacing Cg to your application.  Still, the book does provide 
a brief appendix describing the Cg runtime programming interface for both OpenGL and 
Direct3D. 

1. Follow-up: A Complete Cg Demo 

Still, there’s not a complete basic example that shows how everything fits together.  With 
that in mind, this article presents a complete graphics demo written in ANSI C that 
renders a procedurally-generated bump-mapped torus.  The demo’s two Cg programs are 
taken directly from the book’s Chapter 8 (Bump Mapping).  While the Cg programs are 
reprinted at the end of the article, please consult The Cg Tutorial for an explanation of the 
programs and the underlying bump mapping background and mathematics. 

The demo renders with OpenGL and interfaces with the window system via the cross-
platform OpenGL Utility Toolkit (GLUT).†  To interface the application with the Cg 
programs, the demo calls the generic Cg and OpenGL-specific CgGL runtime routines. 

OpenGL, GLUT, and the Cg and CgGL runtimes are supported on Windows, OS X, and 
Linux so the demo source code compiles and runs on all these operating systems.  The 
demo automatically selects the most appropriate profile for your hardware.  Cg supports 
multi-vendor OpenGL profiles (namely, arbvp1 and arbfp1) so the demo works on 

                                                 

* You can download the latest version of the software accompanying The Cg Tutorial from 
http://developer.nvidia.com/object/cg_tutorial_software.html for either Windows or Linux.  For best 
results, make sure you have the latest graphics drivers, latest Cg toolkit, and latest version of The Cg 
Tutorial examples installed. 

† Documentation, source code, and pre-compiled GLUT libraries are available from 
http://www.opengl.org/developers/documentation/glut.html  

http://developer.nvidia.com/object/cg_tutorial_software.html
http://www.opengl.org/developers/documentation/glut.html
http://www.opengl.org/developers/documentation/glut.html
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GPUs from ATI, NVIDIA, or any other OpenGL implementation, such as Brian Paul’s 
open source Mesa library, that exposes the multi-vendor ARB_vertex_program and 
ARB_fragment_program OpenGL extensions. 

I verified the demo works on DirectX 9-class hardware including ATI’s Radeon 9700 and 
similar GPUs, NVIDIA’s GeForce FX products, and the GeForce 6 Series.  The demo 
even works on older NVIDIA DirectX 8-class hardware such as GeForce3 and GeForce4 
Ti GPUs.   

So this article’s simple Cg-based demo handles multiple operating systems, two different 
GPU hardware generations (DirectX 8 & DirectX 9), and hardware from the two major 
GPU vendors (and presumably any other OpenGL implementation exposing OpenGL’s 
standard, multi-vendor vertex and fragment program extensions) with absolutely no 
GPU-dependent or operating system-dependent code. 

To further demonstrate the portability possible by writing shaders in Cg, you can also 
compile the discussed Cg programs with Microsoft’s HLSL runtime with no changes to 
the Cg programs. 

This unmatched level of shader portability is why the Cg language radically changes how 
graphics applications get at programmable shading hardware today.  With one high-level 
language, you can write high-performance, cross-platform, cross-vendor, and cross-3D 
API shaders.  Just as you can interchange images and textures stored as JPEG, PNG, and 
Targa files across platforms, you can now achieve a similar level of interoperability with 
something as seemingly hardware-dependent as a hardware shading algorithm. 

2. Demo Source Code Walkthrough 

The demo, named cg_bumpdemo, consists of the following five source files: 

1. cg_bumpdemo.c—ANSI C source code for the demo. 
2. brick_image.h—Header file containing RGB8 image data for a mipmapped 

128x128 normal map for a brick pattern. 
3. nmap_image.h—Header file containing RGB8 image data for a normalization 

vector cube map with 32x32 faces. 
4. C8E6v_torus.cg—Cg vertex program to generate a torus from a 2D mesh of 

vertices. 
5. C8E4f_specSurf.cg—Cg fragment program for surface-local specular and 

diffuse bump mapping. 

Later, we will go through cg_bumpdemo.c line-by-line. 

To keep the demo self-contained and maintain the focus on how the Cg runtime loads, 
compiles, and configures the Cg programs and then renders with them, this demo uses 
static texture image data included in the two header files. 
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The data in these header files are used to construct OpenGL texture objects for a brick 
pattern normal map 2D texture and a “vector normalization” cube map.  These texture 
objects are sampled by the fragment program.  

The data in the two headers files consists of hundreds of comma-separated numbers (I’ll 
save you the tedium of publishing all the numbers in this article…).  Rather than static 
data compiled into an executable, a typical application would read normal map textures 
from on-disk image files or convert a height-field image file to a normal map.  Likewise, 
a “normalization vector” cube map is typically procedurally generated rather than loaded 
from static data. 

The two Cg files each contain a Cg entry function with the same name as the file.  These 
functions are explained in Chapter 8 (Bump Mapping) of The Cg Tutorial.  These files 
are read by the demo when the demo begins running.  The demo uses the Cg runtime to 
read, compile, configure, and render with these Cg programs.  

Rather than rehash the background, theory, and operation of these Cg programs, you 
should consult Chapter 8 of The Cg Tutorial.  Pages 200 to 204 explain the construction 
of the brick pattern normal map.  Pages 206 to 208 explain the construction and 
application of a normalization cube map.  Pages 208 to 211 explains specular bump 
mapping, including the C8E4f_specSurf fragment program.  Pages 211 to 218 explain 
texture-space bump mapping.  Pages 218 to 224 explain the construction of the per-vertex 
coordinate system needed for texture-space bump mapping for the special case of an 
object (the torus) that is generated from parametric equations by the C8E6v_torus vertex 
program. 

For your convenience and so you can map Cg parameter names used in the C source file 
to their usage in the respective Cg programs,  the complete contents of C8E6v_torus.cg 
and C8E4f_specSurf.cg are presented in Appendix A and Appendix B at the end of this 
article (the Cg programs are short, so why not). 

3. On to the C Code 

Now, it’s time to dissect cg_bumpdemo.c line-by-line as promised (we’ll skip comments 
in the source code if the comments are redundant with the discussion below). 

To help you identify which names are external to the program, the following words are 
listed in boldface within the C code:  C keywords; C standard library routines and 
macros; OpenGL, GLU, and GLUT routines, types, and enumerants; and Cg and CgGL 
runtime routines, types, and enumerants. 
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3.1. Initial Declarations 

#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <GL/glut.h> 
#include <Cg/cg.h> 
#include <Cg/cgGL.h> 

The first three includes are basic ANSI C standard library includes.  We’ll be using sin, 
cos, printf, exit, and NULL.  We rely on the GLUT header file to include the necessary 
OpenGL and OpenGL Utility Library (GLU) headers. 

The <Cg/cg.h> header contains generic routines for loading and compiling Cg programs 
but does not contain routines that call the 3D programming interface to configure the Cg 
programs for rendering.  The generic Cg routines begin with a cg prefix; the generic Cg 
types begin with a CG prefix; and the generic Cg macros and enumerations begin with a 
CG_ prefix. 

The <Cg/cgGL.h> contains the OpenGL-specific routines for configuring Cg programs 
for rendering with OpenGL.  The OpenGL-specific Cg routines begin with a cgGL prefix; 
the OpenGL-specific Cg types begin with a CGGL prefix; and the OpenGL-specific Cg 
macros and enumerations begin with a CGGL_ prefix. 

Technically, the <Cg/cgGL.h> header includes <Cg/cg.h> so we don’t have to explicitly 
include <Cg/cg.h> but we include both to remind you that we’ll be calling both generic 
Cg routines and OpenGL-specific Cg routines. 

/* An OpenGL 1.2 define */ 
#define GL_CLAMP_TO_EDGE                    0x812F 
 
/* A few OpenGL 1.3 defines */ 
#define GL_TEXTURE_CUBE_MAP                 0x8513 
#define GL_TEXTURE_BINDING_CUBE_MAP         0x8514 
#define GL_TEXTURE_CUBE_MAP_POSITIVE_X      0x8515 

We will use these OpenGL enumerants later when initializing our “normalization vector” 
cube map.  We list them here explicitly since we can’t count on <GL/gl.h> (included by 
<GL/glut.h> above) to have enumerants added since OpenGL 1.1 because Microsoft 
still supplies the dated OpenGL 1.1 header file. 

Next, we’ll list all global variables we plan to use.  We use the my prefix to indicate 
global variables that we define (to make it crystal clear what names we are defining 
rather than those names defined by header files).  When we declare a variable of a type 
defined by the Cg runtime, we use the myCg prefix to remind you that the variable is for 
use with the Cg runtime. 
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3.1.1. Cg Runtime Variables 

static CGcontext   myCgContext; 
static CGprofile   myCgVertexProfile, 
                   myCgFragmentProfile; 
static CGprogram   myCgVertexProgram, 
                   myCgFragmentProgram; 
static CGparameter myCgVertexParam_lightPosition, 
                   myCgVertexParam_eyePosition, 
                   myCgVertexParam_modelViewProj, 
                   myCgVertexParam_torusInfo, 
                   myCgFragmentParam_ambient, 
                   myCgFragmentParam_LMd, 
                   myCgFragmentParam_LMs, 
                   myCgFragmentParam_normalMap, 
                   myCgFragmentParam_normalizeCube,  
                   myCgFragmentParam_normalizeCube2 ; 

These are the global Cg runtime variables the demo initializes uses.  We need a single Cg 
compilation context named myCgContext.  Think of your Cg compilation context as the 
“container” for all the Cg handles you manipulate.  Typically your program requires just 
one Cg compilation context. 

We need two Cg profile variables, one for our vertex program profile named 
myCgVertexProfile and another for our fragment program profile named 
myCgFragmentProfile.  These profiles correspond to a set of programmable hardware 
capabilities for vertex or fragment processing and their associated execution 
environment.  Profiles supported by newer GPUs are generally more functional than 
older profiles.  The Cg runtime makes it easy to select the most appropriate profile for 
your hardware as we’ll see when we initialize these profile variables. 

Next we need two Cg program handles, one for our vertex program named 
myCgVertexProgram and another for our fragment program named 
myCgFragmentProgram.  When we compile a Cg program successfully, we use these 
handles to refer to the corresponding compiled program. 

We’ll need handles to each of the uniform input parameters used by our vertex and 
fragment programs respectively.  We use these handles to match the uniform input 
parameters in the Cg program text with the opaque OpenGL state used to maintain the 
corresponding Cg program state.  Different profiles can maintain Cg program state with 
different OpenGL state so these Cg parameter handles abstract away the details of how a 
particular profile manages a particular Cg parameter. 

The myCgVertexParam_ prefixed parameter handles end with each of the four uniform 
input parameters to the C8E6v_torus vertex program in Appendix A.  Likewise, the 
myCgFragmentParam_ prefixed parameter handles end with each of the six uniform input 
parameters to the C8E4v_specSurf fragment program in Appendix B. 
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In a real program, you’ll probably have more Cg program handles than just two.  You 
may have hundreds depending on how complicated the shading is in your application.  
And each program handle requires a Cg parameter handle for each input parameter.  This 
means you probably won’t want to use global variables to store these handles.  You’ll 
probably want to encapsulate your Cg runtime handles within “shader objects” that may 
well combine vertex and fragment Cg programs and their parameters within the same 
object for convenience.  Keep in mind that this demo is trying to be very simple. 

3.1.2. Other Variables 

static const char *myProgramName = "cg_bumpdemo", 
                  *myVertexProgramFileName = "C8E6v _torus.cg", 
                  *myVertexProgramName = "C8E6v_tor us", 
                  *myFragmentProgramFileName = "C8E 4f_specSurf.cg", 
                  *myFragmentProgramName = "C8E4f_s pecSurf"; 

We need various string constants to identify our program name (for error messages and 
the window name), the names of the file names containing the text of the vertex and 
fragment Cg programs to load, and the names of the entry functions for each of these 
files. 

In Appendix A, you’ll find the contents of the C8E6v_torus.cg file and, within the file’s 
program text, you can find the entry function named C8E6v_torus.  In Appendix B, 
you’ll find the contents of the C8E4f_specSurf.cg file and, within the file’s program 
text, you can find the entry function name C8E4f_specSurf.  

static float myEyeAngle = 0, 
             myAmbient[4] = { 0.3f, 0.3f, 0.3f, 0.3 f }, /* Dull white */ 
             myLMd[4] = { 0.9f, 0.6f, 0.3f, 1.0f },      /* Gold */ 
             myLMs[4] = { 1.0f, 1.0f, 1.0f, 1.0f };      /* Bright white */ 

These are demo variables used to control the rendering of the scene.  The viewer rotates 
around the fixed torus.  The angle of rotation and a degree of elevation for the viewer is 
determined by myEyeAngle, specified in radians.  The other three variables provide 
lighting and material parameters to the fragment program parameters.  With these 
particular values, the bump-mapped torus has a “golden brick” look. 

3.1.3. Texture Data 

/* OpenGL texture object (TO) handles. */ 
enum { 
  TO_NORMALIZE_VECTOR_CUBE_MAP = 1, 
  TO_NORMAL_MAP = 2, 
}; 

The TO_ prefixed enumerants provide numbers for use as OpenGL texture object names. 
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static const GLubyte 
myBrickNormalMapImage[3*(128*128+64*64+32*32+16*16+ 8*8+4*4+2*2+1*1)] = { 
/* RGB8 image data for mipmapped 128x128 normal map  for a brick pattern */ 
#include "brick_image.h" 
}; 
 
static const GLubyte 
myNormalizeVectorCubeMapImage[6*3*32*32] = { 
/* RGB8 image data for normalization vector cube ma p with 32x32 faces */ 
#include "normcm_image.h" 
}; 

These static, constant arrays include the header files containing the data for the normal 
map’s brick pattern and the “normalization vector” cube map.  Each texel is 3 unsigned 
bytes (one for red, green, and blue).  While each byte of the texel format is unsigned, 
normal map components, as well as the vector result of normalizing an arbitrary direction 
vector, are logically signed values within the [-1,1] range.  To accommodate signed 
values with OpenGL’s conventional GL_RGB8 unsigned texture format, the unsigned [0,1] 
range is expanded in the fragment program to a signed [-1,1] range.  This is the reason for 
the expand helper function called by the C8E4f_specSurf fragment program (see 
Appendix B). 

The normal map has mipmaps so there is data for the 128x128 level, and then, each of the 
successively downsampled mipmap levels.  The “normalization vector” cube map has six 
32x32 faces. 

3.2. Error Reporting Helper Routine 

static void checkForCgError( const char *situation) 
{ 
  CGerror error; 
  const char *string = cgGetLastErrorString(&error); 
 
  if (error != CG_NO_ERROR) { 
    printf("%s: %s: %s\n", 
      myProgramName, situation, string); 
    if (error == CG_COMPILER_ERROR) { 
      printf("%s\n", cgGetLastListing(myCgContext)); 
    } 
    exit(1); 
  } 
} 

Cg runtime routines report errors by setting a global error value.  Calling the 
cgGetLastErrorString routine both returns a human-readable string describing the last 
generated Cg error and writes an error code of type CGerror.  CG_NO_ERROR (defined to 
be zero) means there was no error.  As a side-effect, cgGetLastErrorString also resets 
the global error value to CG_NO_ERROR.  The Cg runtime also includes the simpler 
function cgGetError that just returns and then resets the global error code if you just 
want the error code and don’t need a human-readable string too. 
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The checkForCgError routine is used to ensure proper error checking throughout the 
demo.  Rather than cheap out on error checking, the demo checks for errors after 
essentially every Cg runtime call by calling checkForCgError.  If an error has occurred, 
the routine prints an error message including the situation string and translated Cg 
error value string, and then exits the demo. 

When the error returned is CG_COMPILER_ERROR that means there are compiler error 
messages too.  So checkForCgError then calls cgGetLastListing to get a listing of the 
compiler error messages and prints these out too.  For example, if your Cg program had a 
syntax error, you’d see the compiler’s error messages including the line numbers where 
the compiler identified problems. 

While “just exiting” is fine for a demo, real applications will want to properly handle any 
errors generated.  In general, you don’t have to be so paranoid as to call 
cgGetLastErrorString after every Cg runtime routine.  Check the runtime API 
documentation for each routine for the reasons it can fail; when in doubt, check for 
failures. 

3.3. Demo Initialization 

static void display( void); 
static void keyboard( unsigned char c, int x, int y); 
 
int main( int argc, char **argv) 
{ 
  const GLubyte *image; 
  unsigned int size, level, face; 

The main entry-point for the demo needs a few local variables to be used when loading 
textures.  We also need to forward declare the display and keyboard GLUT callback 
routines for redrawing the demo’s rendering window and handling keyboard events.   

3.3.1. OpenGL Utility Toolkit Initialization 

  glutInitWindowSize(400, 400); 
  glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE | GLUT_DEPTH); 
  glutInit(&argc, argv); 
 
  glutCreateWindow(myProgramName); 
  glutDisplayFunc(display); 
  glutKeyboardFunc(keyboard); 

Using GLUT, we request a double-buffered RGB color 400x400 window with a depth 
buffer.  We allow GLUT to take a pass parsing the program’s command line arguments.  
Then, we create a window and register the display and keyboard callbacks.  We’ll 
explain these callback routines after completely initializing GLUT, OpenGL, and Cg.  
That’s it for initializing GLUT except for calling glutMainLoop to start event processing 
at the very end of main. 
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3.3.2. OpenGL Rendering State Initialization 

  glClearColor(0.1, 0.3, 0.6, 0.0);  /* Blue background */ 
  glMatrixMode( GL_PROJECTION); 
  glLoadIdentity(); 
  gluPerspective( 
    60.0,   /* Field of view in degree */ 
    1.0,    /* Aspect ratio */  
    0.1,    /* Z near */ 
    100.0); /* Z far */ 
  glMatrixMode( GL_MODELVIEW); 
  glEnable( GL_DEPTH_TEST); 

Next, we initialize basic OpenGL rendering state.  For better aesthetics, we change the 
background color to a nice sky blue.  We specify a perspective projection matrix and 
enable depth testing for hidden surface elimination. 

3.3.3. OpenGL Texture Object Initialization 

  glPixelStorei( GL_UNPACK_ALIGNMENT, 1); /* Tightly packed texture data. */ 

By default, OpenGL’s assumes each image scanline is aligned to begin on 4 byte 
boundaries.  However, RGB8 data (3 bytes per pixel) is usually tightly packed so a 1 byte 
alignment is appropriate.  That’s indeed the case for the RGB8 pixels in our static arrays 
used to initialize our textures.  If you didn’t know about this OpenGL pitfall before, you 
do now.‡ 

3.3.3.1. Normal Map 2D Texture Initialization 

  glBindTexture( GL_TEXTURE_2D, TO_NORMAL_MAP); 
  /* Load each mipmap level of range-compressed 128 x128 brick normal 
     map texture. */ 
  for (size = 128, level = 0, image = myBrickNormalMapIm age; 
       size > 0; 
       image += 3*size*size, size /= 2, level++) { 
    glTexImage2D( GL_TEXTURE_2D, level, 
      GL_RGB8, size, size, 0, GL_RGB, GL_UNSIGNED_BYTE, image); 
  } 
  glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, 
    GL_LINEAR_MIPMAP_LINEAR); 

We bind to the texture object for our brick pattern normal map 2D texture and load each 
of the 7 mipmap levels, starting with the 128x128 base level and working down to the 
1x1 level.  Each level is packed into the myBrickNormalMapImage array right after the 

                                                 

‡ Being aware of pitfalls such as this one can save you a lot of time debugging.  This and other OpenGL 
pitfalls are enumerated in my article “Avoiding 19 Common OpenGL Pitfalls” found here 
http://developer.nvidia.com/object/Avoiding_Common_ogl_Pitfalls.html  An earlier HTML version of the  
article (with just 16 pitfalls) is found here 
http://www.opengl.org/developers/code/features/KilgardTechniques/oglpitfall/oglpitfall.html  

http://developer.nvidia.com/object/Avoiding_Common_ogl_Pitfalls.html
http://www.opengl.org/developers/code/features/KilgardTechniques/oglpitfall/oglpitfall.html
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previous level.  So the 64x64 mipmap level immediately follows the 128x128 level, and 
so on.  OpenGL’s default minification filter is “nearest mipmap linear” (again, a weird 
default—it means nearest filtering within a mipmap level and then bilinear filtering 
between the adjacent mipmap levels) so we switch to higher-quality “linear mipmap 
linear” filtering. 

3.3.3.2. Normalize Vector Cube Map Texture Initialization 

  glBindTexture( GL_TEXTURE_CUBE_MAP, TO_NORMALIZE_VECTOR_CUBE_MAP); 
  /* Load each 32x32 face (without mipmaps) of rang e-compressed "normalize 
     vector" cube map. */ 
  for (face = 0, image = myNormalizeVectorCubeMapImage; 
       face < 6; 
       face++, image += 3*32*32) { 
    glTexImage2D( GL_TEXTURE_CUBE_MAP_POSITIVE_X + face, 0, 
      GL_RGB8, 32, 32, 0, GL_RGB, GL_UNSIGNED_BYTE, image); 
  } 
  glTexParameteri( GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR); 
  glTexParameteri( GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, 
    GL_CLAMP_TO_EDGE); 
  glTexParameteri( GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, 
    GL_CLAMP_TO_EDGE); 

Next, we bind the texture object for the “normalization vector” cube map1 intended to 
quickly normalize the 3D lighting vectors that are passed as texture coordinates.  The 
cube map texture has six faces but there’s no need for mipmaps.  Each face is packed into 
the myNormalizeVectorCubeMapImage array right after the prior face with the faces 
ordered in the order of the sequential texture cube map face OpenGL enumerants. 

Again, the default minification state is inappropriate (this time because we don’t have 
mipmaps) so GL_LINEAR is specified instead.  While the default GL_REPEAT wrap mode 
was fine for the brick pattern that we intend to tile over the surface of the torus, the 
GL_CLAMP_TO_EDGE wrap mode (introduced by OpenGL 1.2) keeps one edge of a cube 
map face from bleeding over to the other. 

GLUT and OpenGL are now initialized so it is time to begin loading, compiling, and 
configuring the Cg programs. 

3.3.4. Cg Runtime Initialization 

  myCgContext = cgCreateContext(); 
  checkForCgError("creating context"); 

                                                 

1 Using a “normalization vector” cube map allows our demo to work on older DirectX 8-class GPUs that 
lacked the shading generality to normalize vectors mathematically.  Ultimately as more capable GPUs 
become ubiquitous, use of normalization cube maps is sure to disappear in favor of normalizing a vector 
mathematically.  See Exercise 5. 
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Before we can do anything with the Cg runtime, we need to allocate a Cg compilation 
context with cgCreateContext.  Typically, your application just needs one Cg 
compilation context unless you have a multi-threaded application that requires using the 
Cg runtime concurrently in different threads.  Think of the Cg context as the context and 
container for all your Cg programs that are creating, loading (compiling), and configured 
by the Cg runtime. 

3.3.5. Cg Vertex Profile Selection 

  myCgVertexProfile = cgGLGetLatestProfile( CG_GL_VERTEX); 
  cgGLSetOptimalOptions(myCgVertexProfile); 
  checkForCgError("selecting vertex profile"); 

We need a profile with which to compile our vertex program.  We could hard-code a 
particular profile (for example, the multi-vendor CG_PROFILE_ARBVP1 profile), but we are 
better off asking the CgGL runtime to determine the best vertex profile for our current 
OpenGL context by calling the cgGLGetLatestProfile routine.  (Keep in mind there’s a 
current OpenGL rendering context that GLUT created for us when we called 
glutCreateWindow.)  cgGLGetLatestProfile calls OpenGL queries to examine the 
current OpenGL rendering context.  Based on the OpenGL GL_EXTENSIONS string, this 
routine can decide what profiles are supported and then which hardware-supported 
profile offers the most functionality and performance.  The CG_GL_VERTEX parameter 
says to return the most appropriate vertex profile, but we can also pass CG_GL_FRAGMENT, 
as we will do later, to determine the most appropriate fragment profile. 

Cg supports a number of vertex profiles.  These are the vertex profiles currently 
supported by Cg 1.4 for OpenGL:  CG_PROFILE_VP40 corresponds to the vp40 vertex 
program profile for the NV_vertex_program3 OpenGL extension (providing full access 
to the vertex processing features of NVIDIA’s GeForce 6 Series GPUs such as vertex 
textures).  CG_PROFILE_VP30 corresponds to the vp30 vertex program profile for the 
NV_vertex_program2 OpenGL extension (providing full access to the vertex processing 
features of NVIDIA’s GeForce FX GPUs such as per-vertex dynamic branching).  
CG_PROFILE_ARBVP1 corresponds to the arbvp1 vertex program profile for the 
ARB_vertex_program OpenGL extension (a multi-vendor OpenGL standard, supported 
by both NVIDIA and ATI).  CG_PROFILE_VP20 corresponds to the vp20 vertex program 
profile for the NV_vertex_program and NV_vertex_program1_1 OpenGL extensions 
(for NVIDIA’s GeForce3, GeForce4 Ti, and later GPUs). 

While several GPUs can support the same profile, there may be GPU-specific techniques 
the Cg compiler can use to make the most of the available functionality and generate 
better code for your given GPU.  By calling cgGLSetOptimalOptions with the profile 
we’ve selected, we ask the compiler to optimize for the specific hardware underlying our 
OpenGL rendering context. 

For example, some vertex profiles such as CG_PROFILE_VP40 support texture fetches but 
typically support fewer texture image units than the hardware’s corresponding fragment-



 13 

level texture functionality.  cgGLSetOptimalOptions informs the compiler what the 
hardware’s actual vertex texture image unit limit is. 

3.3.5.1. Vertex Program Creation and Loading 

    myCgVertexProgram = 
      cgCreateProgramFromFile( 
        myCgContext,              /* Cg runtime context */ 
        CG_SOURCE,                /* Program in human-readable form */ 
        myVertexProgramFileName,  /* Name of file containing program */ 
        myCgVertexProfile,        /* Profile to try */ 
        myVertexProgramName,      /* Entry function name */  
        NULL);                    /* No extra compiler options */ 
    checkForCgError("creating vertex program from f ile"); 
    cgGLLoadProgram(myCgVertexProgram); 
    checkForCgError("loading vertex program"); 

Now we try to create and load the Cg vertex program.  We use the optimal vertex profile 
for our OpenGL rendering context to compile the vertex program contained in the file 
named by myVertexProgramFileName.  As it turns out, the C8E6v_torus vertex program 
is simple enough that every Cg vertex profile mentioned in the last section is functional 
enough to compile the C8E6v_torus program. 

The cgCreateProgramFromFile call reads the file, parses the contents, and searches for 
the entry function specified by myVertexProgramName and, if found, creates a vertex 
program for the profile specified by myCgVertexProfile.  The 
cgCreateProgramFromFile routine is a generic Cg runtime routine so it just creates the 
program without actually translating the program into a form that can be passed to the 3D 
rendering programming interface.   

You don’t actually need a current OpenGL rendering context to call 
cgCreateProgramFromFile, but you do need a current OpenGL rendering context that 
supports the profile of the program for cgGLLoadProgram to succeed. 

It is the OpenGL-specific cgGLLoadProgram routine that translates the program into a 
profile-dependent form.  For example, in the case of the multi-vendor arbvp1 profile, this 
includes calling the ARB_vertex_program extension routine glProgramStringARB to 
create an OpenGL program object. 

We expect cgGLLoadProgram to “just work” because we’ve already selected a profile 
suited for our GPU and cgCreateProgramFromFile successfully compiled the Cg 
program into a form suitable for that profile. 
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3.3.5.2. Vertex Program Parameter Handles 

  myCgVertexParam_lightPosition = 
    cgGetNamedParameter(myCgVertexProgram, "lightPosition"); 
  checkForCgError("could not get lightPosition para meter"); 
 
  myCgVertexParam_eyePosition = 
    cgGetNamedParameter(myCgVertexProgram, "eyePosition"); 
  checkForCgError("could not get eyePosition parame ter"); 
 
  myCgVertexParam_modelViewProj = 
    cgGetNamedParameter(myCgVertexProgram, "modelViewProj"); 
  checkForCgError("could not get modelViewProj para meter"); 
 
  myCgVertexParam_torusInfo = 
    cgGetNamedParameter(myCgVertexProgram, "torusInfo"); 
  checkForCgError("could not get torusInfo paramete r"); 

Now that the vertex program is created and successfully loaded, we initialize all the Cg 
parameter handles.  Later during rendering in the display callback, we will use these 
parameter handles to update whatever OpenGL state the compiled program associates 
with each parameter. 

In this demo, we know a priori what the input parameter names are to keep things simple.  
If we had no special knowledge of the parameter names, we could use Cg runtime 
routines to iterate over all the parameter names for a given program (see the 
cgGetFirstParameter, cgGetNextParameter, and related routines—use these for 
Exercise 11 at the end of this article). 

3.3.6. Cg Fragment Profile Selection 

  myCgFragmentProfile = cgGLGetLatestProfile( CG_GL_FRAGMENT); 
  cgGLSetOptimalOptions(myCgFragmentProfile); 
  checkForCgError("selecting fragment profile"); 

We select our fragment profile in the same manner we used to select our vertex profile.  
The only difference is we pass the CG_GL_FRAGMENT parameter when calling 
cgGLGetLatestProfile. 

Cg supports a number of fragment profiles.  These are the fragment profiles currently 
supported by Cg 1.4 for OpenGL:  CG_PROFILE_FP40 corresponds to the fp40 vertex 
program profile for the NV_fragment_program2 OpenGL extension (providing full 
access to the fragment processing features of NVIDIA’s GeForce 6 Series GPUs such as 
per-fragment dynamic branching).  CG_PROFILE_FP30 corresponds to the fp30 vertex 
program profile for the NV_fragment_program OpenGL extension (providing full access 
to the fragment processing features of NVIDIA’s GeForce FX GPUs).  
CG_PROFILE_ARBFP1 corresponds to the arbfp1 fragment program profile for the 
ARB_fragment_program OpenGL extension (a multi-vendor OpenGL standard, 
supported by both NVIDIA and ATI).  CG_PROFILE_FP20 corresponds to the fp20 vertex 
program profile for the NV_texture_shader, NV_texture_shader2, 
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NV_register_combiners, and NV_register_combiners2 OpenGL extensions (for 
NVIDIA’s GeForce3, GeForce4 Ti, and later GPUs). 

As in the vertex profile case, cgGLSetOptimalOptions informs the compiler about 
specific hardware limits relevant to fragment profiles.  For example, when your OpenGL 
implementation supports the ATI_draw_buffers extension, the 
cgGLSetOptimalOptions informs the compiler of this fact so the compiler can know 
how many color buffers are actually available when compiling for fragment profiles that 
support output multiple color buffers.  Other limits such as the ARB_fragment_program 
limit on texture indirections are likewise queried so the compiler is aware of this limit.  
The maximum number of texture indirections the GPU can support may require the 
compiler to re-schedule the generated instructions around this limit.  Other profile limits 
include the number of texture image units available, the maximum number of temporaries 
and constants allowed, and the static instruction limit. 

3.3.6.1. Fragment Program Creation and Loading 

  myCgFragmentProgram = 
    cgCreateProgramFromFile( 
      myCgContext,                /* Cg runtime context */ 
      CG_SOURCE,                  /* Program in human-readable form */ 
      myFragmentProgramFileName,  /* Name of file containing program */ 
      myCgFragmentProfile,        /* Profile to try */ 
      myFragmentProgramName,      /* Entry function name */ 
      NULL);                      /* No extra compiler options */ 
  checkForCgError("creating fragment program from f ile"); 
  cgGLLoadProgram(myCgFragmentProgram); 
  checkForCgError("loading fragment program"); 

We create and load the fragment program in much the same manner as the vertex 
program. 

3.3.6.2. Fragment Program Parameter Handles 

  myCgFragmentParam_ambient = 
    cgGetNamedParameter(myCgFragmentProgram, "ambient"); 
  checkForCgError("getting ambient parameter"); 
 
  myCgFragmentParam_LMd = 
    cgGetNamedParameter(myCgFragmentProgram, "LMd"); 
  checkForCgError("getting LMd parameter"); 
 
  myCgFragmentParam_LMs = 
    cgGetNamedParameter(myCgFragmentProgram, "LMs"); 
  checkForCgError("getting LMs parameter"); 
 
  myCgFragmentParam_normalMap = 
    cgGetNamedParameter(myCgFragmentProgram, "normalMap"); 
  checkForCgError("getting normalMap parameter"); 
 
  myCgFragmentParam_normalizeCube = 
    cgGetNamedParameter(myCgFragmentProgram, "normalizeCube"); 
  checkForCgError("getting normalizeCube parameter" ); 
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  myCgFragmentParam_normalizeCube2 = 
    cgGetNamedParameter(myCgFragmentProgram, "normalizeCube2"); 
  checkForCgError("getting normalizeCube2 parameter "); 

We initialize input parameter handles in the same manner as done for vertex parameter 
handles. 

3.3.6.3. Setting OpenGL Texture Objects for Sampler Parameters 

  cgGLSetTextureParameter(myCgFragmentParam_normalMap, 
    TO_NORMAL_MAP); 
  checkForCgError("setting normal map 2D texture");  
 
  cgGLSetTextureParameter(myCgFragmentParam_normalizeCube, 
    TO_NORMALIZE_VECTOR_CUBE_MAP); 
  checkForCgError("setting 1st normalize vector cub e map"); 
 
  cgGLSetTextureParameter(myCgFragmentParam_normalizeCube2, 
    TO_NORMALIZE_VECTOR_CUBE_MAP); 
  checkForCgError("setting 2nd normalize vector cub e map"); 

Parameter handles for sampler parameters need to be associated with OpenGL texture 
objects.  The first cgGLSetTextureParameter call associates the TO_NORMAL_MAP texture 
object with the myCgFragmentParam_normalMap parameter handle. 

Notice how the TO_NORMALIZE_VECTOR_CUBE_MAP texture object is associated with the 
two distinct sampler parameters, normalizeCube and normalizeCube2.  The reason this 
is done is to support older DirectX 8-class hardware such as the GeForce3 and GeForce4 
Ti.  These older DirectX 8-class GPUs must sample the texture associated with a given 
texture unit and that unit’s corresponding texture coordinate set (and only that texture 
coordinate set).  In order to support DirectX 8-class profiles (namely, fp20), the 
C8E4f_specSurf fragment program is written in such a way that the texture units 
associated with the two 3D vectors to be normalized (lightDirection and halfAngle) 
are each bound to the same “normalization vector” cube map.  If there was no desire to 
support older DirectX 8-class hardware, fragment programs targeting the more general 
DirectX 9-class profiles (namely, arbfp1 and fp30) could simply sample a single 
“normalization vector” texture unit. 

Alternatively, the Cg fragment program could normalize the 3D lighting vectors with the 
normalize Cg standard library routine (see Exercise 5 at the end of this article), but for a 
lot of current hardware, a “normalization vector” cube map is faster and the extra 
precision for a mathematical normalize function is not crucial for lighting. 
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3.3.7. Start Event Processing 

  glutMainLoop(); 
  return 0;  /* Avoid a compiler warning. */  
} 

GLUT, OpenGL, and Cg are all initialized now so we can start GLUT event processing.  
This routine never returns.  When a redisplay of the GLUT window created earlier is 
needed, the display callback is called.  When a key press occurs in the window, the 
keyboard callback is called. 

3.4. Displaying the Window 

Earlier in the code, we forward declared the display callback.  Now it’s time to discuss 
what the display routine does and how exactly we render our bump-mapped torus using 
the textures and Cg vertex and fragment programs we’ve loaded. 

3.4.1. Rendering a 2D Mesh to Generate a Torus 

In the course of updating the window, the display callback invokes the drawFlatPatch 
subroutine.  This subroutine renders a flat 2D mesh with immediate-mode OpenGL 
commands. 

/* Draw a flat 2D patch that can be "rolled & bent"  into a 3D torus by 
   a vertex program. */ 
void 
drawFlatPatch( float rows, float columns) 
{ 
  const float m = 1.0f/columns;  
  const float n = 1.0f/rows;  
  int i, j; 
 
  for (i=0; i<columns; i++) { 
    glBegin( GL_QUAD_STRIP); 
    for (j=0; j<=rows; j++) { 
      glVertex2f(i*m, j*n); 
      glVertex2f((i+1)*m, j*n); 
    } 
    glVertex2f(i*m, 0); 
    glVertex2f((i+1)*m, 0); 
    glEnd(); 
  } 
} 

The mesh consists of a number of adjacent quad strips.  The C8E6v_torus vertex 
program will take these 2D vertex coordinates and use them as parametric coordinates for 
evaluating the position of vertices on a torus. 

Nowadays it’s much faster to use OpenGL vertex arrays, particularly with vertex buffer 
objects, to render geometry, but for this simple demo, immediate mode rendering is 
easier. 
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Figure 8-7 from The Cg Tutorial is replicated to illustrate how a 2D mesh could be 
procedurally “rolled and bent” into a torus by a vertex program. 

3.4.2. The Display Callback 

static void display( void) 
{ 
  const float outerRadius = 6, innerRadius = 2; 
  const int sides = 20, rings = 40; 
  const float eyeRadius = 18.0; 
  const float eyeElevationRange = 8.0; 
  float eyePosition[3]; 
 
  glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 

The display callback has a number of constants that control the torus size and 
tessellation and how the torus is viewed. 

  eyePosition[0] = eyeRadius * sin(myEyeAngle); 
  eyePosition[1] = eyeElevationRange * sin(myEyeAngle); 
  eyePosition[2] = eyeRadius * cos(myEyeAngle); 
 
  glLoadIdentity(); 
  gluLookAt( 
    eyePosition[0], eyePosition[1], eyePosition[2],   
    0.0 ,0.0,  0.0,   /* XYZ view center */ 
    0.0, 1.0,  0.0);  /* Up is in positive Y direction */ 

The viewing transform is re-specified each frame.  The eye position is a function of 
myEyeAngle.  By animating this variable, the viewer rotates around the torus with a 
sinusoidally varying elevation.  Because specular bump mapping is view-dependent, the 
specular lighting varies over the torus as the viewer rotates around. 
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3.4.2.1. Binding, Configuring, and Enabling the Vertex Program 

  cgGLBindProgram(myCgVertexProgram); 
  checkForCgError("binding vertex program"); 
 
  cgGLSetStateMatrixParameter(myCgVertexParam_modelViewProj, 
                              CG_GL_MODELVIEW_PROJECTION_MATRIX, 
                              CG_GL_MATRIX_IDENTITY); 
  checkForCgError("setting modelview-projection mat rix"); 
  cgGLSetParameter3f(myCgVertexParam_lightPosition, -8, 0, 15); 
  checkForCgError("setting light position"); 
  cgGLSetParameter3fv(myCgVertexParam_eyePosition, eyePosition); 
  checkForCgError("setting eye position"); 
  cgGLSetParameter2f(myCgVertexParam_torusInfo, outerRadius, innerRadiu s); 
  checkForCgError("setting torus information"); 
 
  cgGLEnableProfile(myCgVertexProfile); 
  checkForCgError("enabling vertex profile"); 

Prior to rendering the 2D mesh, we must bind to the vertex program, set the various input 
parameters used by the program with the parameter handles, and then enable the 
particular profile.  Underneath the covers of these OpenGL-specific Cg routines, the 
necessary OpenGL commands are invoked to configure the vertex program with its 
intended parameter values. 

Rather than specifying the parameter value explicitly as with the cgGLSetParameter 
routines, the cgGLSetStateMatrixParameter call binds the current composition of the 
modelview and projection matrices (specified earlier by gluLookAt and 
gluPerspective commands respectively) to the modelViewProj parameter. 

One of the really nice things about the CgGL runtime is it saves you from having to know 
the details of what OpenGL routines are called to configure use of your Cg vertex and 
fragment programs.  Indeed, the required OpenGL commands can very considerably 
between different profiles. 



 20 

3.4.2.2. Binding, Configuring, and Enabling the Fragment Program 

  cgGLBindProgram(myCgFragmentProgram); 
  checkForCgError("binding fragment program"); 
 
  cgGLSetParameter4fv(myCgFragmentParam_ambient, myAmbient); 
  checkForCgError("setting ambient"); 
  cgGLSetParameter4fv(myCgFragmentParam_LMd, myLMd); 
  checkForCgError("setting diffuse material"); 
  cgGLSetParameter4fv(myCgFragmentParam_LMs, myLMs); 
  checkForCgError("setting specular material"); 
 
  cgGLEnableTextureParameter(myCgFragmentParam_normalMap); 
  checkForCgError("enable texture normal map"); 
  cgGLEnableTextureParameter(myCgFragmentParam_normalizeCube); 
  checkForCgError("enable 1st normalize vector cube  map"); 
  cgGLEnableTextureParameter(myCgFragmentParam_normalizeCube2); 
  checkForCgError("enable 2nd normalize vector cube  map"); 
 
  cgGLEnableProfile(myCgFragmentProfile); 
  checkForCgError("enabling fragment profile"); 

The fragment program is bound, configured, and enabled in much the same manner with 
the additional task of enabling texture parameters with cgGLEnableTextureParameter 
to ensure the indicated texture objects are bound to the proper texture units.   

Without you having to know the details, cgGLEnableTextureParameter calls 
glActiveTexture and glBindTexture to bind the correct texture object (specified 
earlier with cgGLSetTextureParameter) into the compiled fragment program’s 
appropriate texture unit in the manner required for the given profile. 

3.4.2.3. Render the 2D Mesh 

  drawFlatPatch(sides, rings); 

With the vertex and fragment program each configured properly, now render the flat 2D 
mesh that will be formed into a torus and illuminated with specular and diffuse bump 
mapping. 

3.4.2.4. Disable the Profiles and Swap 

  cgGLDisableProfile(myCgVertexProfile); 
  checkForCgError("disabling vertex profile"); 
 
  cgGLDisableProfile(myCgFragmentProfile); 
  checkForCgError("disabling fragment profile"); 
 
  glutSwapBuffers(); 
} 

While not strictly necessary for this demo because just one object is rendered per frame, 
after rendering the 2D mesh, the profiles associated with the vertex program and 
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fragment program are each disabled.  This way you could perform conventional OpenGL 
rendering.  After using the OpenGL-specific Cg runtime, be careful not to assume how 
OpenGL state such as what texture objects are bound to what texture units. 

3.5. Keyboard Processing 

Along with the display callback, we also forward declared and registered the keyboard 
callback.  Now it’s time to see how the demo responses to simple keyboard input. 

3.5.1. Animating the Eye Position 

static void advanceAnimation( void) 
{ 
  myEyeAngle += 0.05f; 
  if (myEyeAngle > 2*3.14159) 
    myEyeAngle -= 2*3.14159; 
  glutPostRedisplay(); 
} 

In order to animate the changing eye position so the view varies, the advanceAnimation 
callback is registered as the GLUT idle function.  The routine advances myEyeAngle and 
posts a request for GLUT to redraw the window with glutPostRedisplay.  GLUT calls 
the idle function repeatedly when there are no other events to process. 

3.5.2. The Keyboard Callback 

static void keyboard( unsigned char c, int x, int y) 
{ 
  static int animating = 0; 
 
  switch (c) { 
  case ' ': 
    animating = !animating; /* Toggle */ 
    glutIdleFunc(animating ? advanceAnimation : NULL); 
    break; 

The space bar toggles animation of the scene by registering and de-registering the 
advanceAnimation routine as the idle function. 

  case 27:  /* Esc key */ 
    cgDestroyProgram(myCgVertexProgram); 
    cgDestroyProgram(myCgFragmentProgram); 
    cgDestroyContext(myCgContext); 
    exit(0); 
    break; 
  } 
} 

The Esc key exits the demo.  While it is not necessary to do so since the demo is exiting, 
the calls to cgDestroyProgram and cgDestroyContext deallocate the Cg runtime 
objects, along with their associated OpenGL state. 
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4. The Demo in Action 

The images below show the rendered bump-mapped torus initially (left) and while 
animating (right). 

   

5. Conclusions 

This tutorial presents a complete Cg bump mapping demo written in ANSI C and 
rendering with OpenGL, relying on two of the actual Cg vertex and fragment programs 
detailed in The Cg Tutorial.  I hope this tutorial “fills in the gaps” for those intrepid Cg 
Tutorial readers now inspired to integrate Cg technology into their graphics application.  
The cg_bumpdemo demo works on ATI and NVIDIA GPUs (and GPUs from any other 
vendor that support the standard, multi-vendor vertex and fragment program extensions).  
The demo is cross-platform as well, supporting Windows, OS X, and Linux systems. 

The time you invest integrating the Cg runtime to your graphics application is time well 
spent because of the productivity and cross-platform support you unleash by writing 
shaders in Cg rather than resorting to low-level 3D rendering commands or a high-level 
shading language tied to a particular 3D API.  With Cg, you can write shaders that work 
with two implementations of the same basic language (Cg & HLSL), two 3D rendering 
programming interfaces (OpenGL & Direct3D), three operating systems (Windows, OS 
X, and Linux), and the two major GPU vendors (ATI & NVIDIA—and any other vendors 
supporting DirectX 9-level graphics functionality).  

Finally, Cg has evolved considerably since Randy and I wrote The Cg Tutorial.  Cg 1.2 
introduced a “sub-shader” facility allowing you to write shaders in Cg in a more modular 
fashion.  And be sure to explore Cg 1.4’s updated implementation of the CgFX meta-
shader format (compatible with Microsoft’s DirectX 9 FX format) to encapsulate non-
programmable state, semantics, hardware-dependent rendering techniques, and support 
for multiple passes. 
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Exercises 

Just as The Cg Tutorial provides exercises at the end of each chapter, here are some 
exercises to help you expand on what you’ve learned. 

Improving the Shading 

1. Support two lights.  You'll need a second light position uniform parameter and 
your updated vertex program must output a second tangent-space light position.  
Example 5-4 in The Cg Tutorial will give you some ideas for supporting multiple 
lights.  However, Example 5-4 is for two per-vertex lights; for this exercise, you 
want two per-fragment lights combined with bump mapping.  Hint: If you add 
multiple lights, you might want to adjust down the values of ambient , LMd, and 
LMs to avoid an “over bright” scene. 

2. Support a positional light (the current light is directional).  Add controls so you 
can interactively position the light in the “hole” of the torus.  Section 5.5 of The 
Cg Tutorial briefly explains the distinction between directional and positional 
lights. 

3. Add geometric self-shadowing to the fragment program. 

a. Clamp the specular to zero if the z component of the tangent-space light 
direction is non-positive to better simulate self-shadowing (this is a 
situation where the light is “below” the horizon of the torus surface).  See 
section 8.5.3 of The Cg Tutorial for details about geometric self-
shadowing. 

b. Further tweak the geometric self-shadowing.  Instead of clamping, 
modulate with saturate(8*lightDirection.z)   so specular highlights 
don't “wink off” when self-shadowing occurs but rather drop off.  When 
the scene animates, which approach looks better? 

4. Change the specular exponent computation to use the pow standard library 
function instead of successive multiplication (you'll find pow is only available on 
more recent DirectX 9-class profiles such as arbfp1  and fp30 , not fp20 ).  
Provide the specular exponent as a uniform parameter to the fragment program. 

5. Instead of using normalization cube maps, use the normalize  standard library 
routine?  Does the lighting change much?  Does the performance change? 

6. Rather than compute the tangent-space half-angle vector at each vertex and 
interpolate the half-angle for each fragment, compute the view vector at each 
vertex; then compute the half-angle at each fragment (by normalizing the sum of 
the interpolated normalized light vector and the interpolated normalized view 
vector).  Does the lighting change much?  Does the performance change? 

7. Advanced:  Read section 8.4 of The Cg Tutorial and implement bump mapping 
on an arbitrary textured polygonal mesh.  Implement this approach to bump map 
an arbitrary textured model. 
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8. Advanced:  Read section 9.4 of The Cg Tutorial and combine bump mapping 
with shadow mapping. 

Improving the Cg Runtime Usage 

9. Provide command line options to specify what file names contain the vertex and 
fragment programs. 

10. Provide better diagnostic messages when errors occur. 

11. Use the Cg runtime to query the uniform parameter names and then prompt the 
user for values for the various parameters (rather than having the parameter names 
and values hard coded in the program itself). 

12. Rather than using global variables for each vertex and fragment program object, 
support loading a set of vertex and fragment programs and allow the user to select 
the current vertex and current fragment program from an interactive menu.  
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Appendix A: C8E6v_torus.cg Vertex Program 

void C8E6v_torus( float2 parametric : POSITION, 
 
             out float4 position       : POSITION, 
             out float2 oTexCoord      : TEXCOORD0, 
             out float3 lightDirection : TEXCOORD1, 
             out float3 halfAngle      : TEXCOORD2, 
 
         uniform float3 lightPosition,  // Object-space  
         uniform float3 eyePosition,    // Object-space 
         uniform float4x4 modelViewProj, 
         uniform float2 torusInfo) 
{ 
  const float pi2 = 6.28318530;  // 2 times Pi 
  // Stetch texture coordinates counterclockwise 
  // over torus to repeat normal map in 6 by 2 patt ern 
  float M = torusInfo[0]; 
  float N = torusInfo[1]; 
  oTexCoord = parametric * float2(-6, 2); 
  // Compute torus position from its parameteric eq uation 
  float cosS, sinS; 
  sincos(pi2 * parametric.x, sinS, cosS); 
  float cosT, sinT; 
  sincos(pi2 * parametric.y, sinT, cosT); 
  float3 torusPosition = float3((M + N * cosT) * cosS, 
                                (M + N * cosT) * si nS, 
                                N * sinT); 
  position = mul(modelViewProj, float4(torusPosition, 1)); 
  // Compute per-vertex rotation matrix 
  float3 dPds = float3(-sinS*(M+N*cosT), cosS*(M+N*cosT), 0 ); 
  float3 norm_dPds = normalize(dPds); 
  float3 normal = float3(cosS * cosT, sinS * cosT, sinT); 
  float3 dPdt = cross(normal, norm_dPds); 
  float3x3 rotation = float3x3(norm_dPds, 
                               dPdt, 
                               normal); 
  // Rotate object-space vectors to texture space 
  float3 eyeDirection = eyePosition - torusPosition; 
  lightDirection = lightPosition - torusPosition; 
  lightDirection = mul(rotation, lightDirection); 
  eyeDirection = mul(rotation, eyeDirection); 
  halfAngle = normalize( normalize(lightDirection) + 
                        normalize(eyeDirection)); 
} 
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Appendix B: C8E4f_specSurf.cg Fragment Program 

float3 expand( float3 v) { return (v-0.5)*2; } 
 
void C8E4f_specSurf( float2 normalMapTexCoord : TEXCOORD0, 
                    float3 lightDirection    : TEXCOORD1, 
                    float3 halfAngle         : TEXCOORD2, 
 
               out float4 color : COLOR, 
 
           uniform float  ambient, 
           uniform float4 LMd, // Light-material diffuse 
           uniform float4 LMs, // Light-material specular 
           uniform sampler2D   normalMap, 
           uniform samplerCUBE normalizeCube, 
           uniform samplerCUBE normalizeCube2) 
{ 
  // Fetch and expand range-compressed normal 
  float3 normalTex = tex2D(normalMap, normalMapTexCoord).xyz; 
  float3 normal = expand(normalTex); 
  // Fetch and expand normalized light vector 
  float3 normLightDirTex = texCUBE(normalizeCube, 
                                   lightDirection). xyz; 
  float3 normLightDir = expand(normLightDirTex); 
  // Fetch and expand normalized half-angle vector 
  float3 normHalfAngleTex = texCUBE(normalizeCube2, 
                                    halfAngle).xyz;  
  float3 normHalfAngle = expand(normHalfAngleTex); 
  
  // Compute diffuse and specular lighting dot prod ucts 
  float diffuse = saturate( dot(normal, normLightDir)); 
  float specular = saturate( dot(normal, normHalfAngle)); 
  // Successive multiplies to raise specular to 8th  power 
  float specular2 = specular*specular; 
  float specular4 = specular2*specular2; 
  float specular8 = specular4*specular4; 
 
  color = LMd*(ambient+diffuse) + LMs*specular8; 
} 


